Graphs with Eulerian chains

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graphs with Eulerian unit spheres

d-spheres are defined graph theoretically and inductively as the empty graph in dimension d = −1 and d-dimensional graphs for which all unit spheres S(x) are (d−1)-spheres and such that for d ≥ 0 the removal of one vertex renders the graph contractible. Eulerian d-spheres are geometric d-spheres which can be colored with d + 1 colors. They are Eulerian graphs in the classical sense and for d ≥ ...

متن کامل

Editing to Eulerian Graphs

We investigate the problem of modifying a graph into a connected graph in which the degree of each vertex satisfies a prescribed parity constraint. Let ea, ed and vd denote the operations edge addition, edge deletion and vertex deletion respectively. For any S ⊆ {ea, ed, vd}, we define Connected Degree Parity Editing(S) (CDPE(S)) to be the problem that takes as input a graph G, an integer k and...

متن کامل

Subsemi - Eulerian Graphs

A graph is subeulerian if it is spanned by an eulerian supergraph. Boesch, Suffel and Tindell have characterized the class of subeulerian graphs and determined the minimum number of additional lines required to make a subeulerian graph eulerian. In this paper, we consider the related notion of a subsemi-eulerian graph, i.e. a graph which is spanned by a supergraph having an open trail containin...

متن کامل

Embeddings in Eulerian graceful graphs

Let G(V,E) be a graph of order n and size m. A graceful labeling of G is an injection f : V (G) → {0, 1, 2, ...,m} such that, when each edge uv is assigned the label f(uv) = |f(u)− f(v)|, the resultant edge labels are distinct. We focus on general results in graceful labeling, and provide an affirmative answer to the following open problem: Can every connected graph be embedded as an induced su...

متن کامل

Circuit Decompositions of Eulerian Graphs

Let G be an eulerian graph. For each vertex v # V(G), let P(v) be a partition of the edges incident with v and set P= v # V(G) P(v), called a forbidden system of G. We say that P is admissible if |P & T | 2 |T | for every P # P and every edge cut T of G. H. Fleischner and A. Frank (1990, J. Combin. Theory Ser. B 50, 245 253) proved that if G is planar and P is any admissible forbidden system of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Australian Mathematical Society

سال: 1984

ISSN: 0004-9727,1755-1633

DOI: 10.1017/s0004972700021638